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We present simulation results for the contact process on regular cubic networks that are composed of a
one-dimensional lattice and a set of long edges with unbounded length. Networks with different sets of long
edges are considered that are characterized by different shortest-path dimensions and random-walk dimensions.
We provide numerical evidence that an absorbing phase transition occurs at some finite value of the infection
rate and the corresponding dynamical critical exponents depend on the underlying network. Furthermore, the
time-dependent quantities exhibit log-periodic oscillations in agreement with the discrete scale invariance of
the networks. In case of spreading from an initial active seed, the critical exponents are found to depend on the
location of the initial seed and break the hyperscaling law of the directed percolation universality class due to
the inhomogeneity of the networks. However, if the cluster-spreading quantities are averaged over initial sites,
the hyperscaling law is restored.
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I. INTRODUCTION

It is known both for equilibrium and nonequilibrium sys-
tems that the presence of long-range interactions leads to
different critical behaviors compared to universality classes
characteristic for systems with short-range interactions �1�.
This has been demonstrated for a paradigmatic model exhib-
iting a phase transition to a single absorbing state, the contact
process �CP�, which has been introduced to model epidemic
spreading without immunization �2,3�. In this simple model,
lattice sites have two states �active or inactive� and active
sites may become inactive or may render neighboring inac-
tive sites active. The absorbing phase and the active phase of
the systems are separated by a continuous phase transition
with the universal behavior of the directed percolation �DP�
�4–6�. Long-range interactions have been included by allow-
ing the activation process for far-away inactive sites with
probabilities that decay algebraically with the distance. The
critical exponents of the corresponding absorbing phase tran-
sition have been found to depend continuously on the expo-
nent controlling the decay of activation probabilities �7,8�.

An alternative way of realizing long-range interactions is
when the dynamical process is defined on a network with
long links that connect distant sites. Networks of this type
are the scale-free networks constructed by preferential at-
tachment �11�, where the critical behavior of CP is controlled
by the degree distribution �9,10�. Other models of networks
are those which are composed of a d-dimensional regular
lattice and additional long edges. These arise, e.g., in socio-
physics �11� or in the context of conductive properties of
linear polymers with crosslinks that connect remote mono-
mers �12�. In general, a pair of nodes separated by the dis-
tance l is connected by an edge with a probability pl��l−s

for large l �13–24�. We mention that the case s=0 corre-
sponds to the Watts-Strogatz graph �25�, which displays the
small-world phenomenon, although that model is constructed
by rewiring edges rather than adding new ones; therefore the
resulting graph may be disconnected. An intriguing property
of these graphs for d=1 is that in the marginal case s=2, the
intrinsic properties show a power-law behavior and the cor-
responding exponents vary continuously with the prefactor
�. Indeed, this has been conjectured for the diameter D as a
function of the number of nodes L, which means D�L�
�Ldmin, where the dimension dmin depends on � �17�. Later,
power-law bounds have been established for D�L� �20�. For a
class of cubic networks with s=2, the algebraic growth of the
diameter has been explicitly demonstrated �24�. Moreover,
the mean-square displacement of random walks in such net-
works has been found to grow algebraically in time with an
anomalous random-walk dimension that is characteristic for
the underlying network. This behavior contrasts with Lévy
flights in the respect that—here—the decay exponent s does
not exclusively determine the diffusion exponent, but the lat-
ter depends also on the details of the structure of networks if
s=2. As opposed to random walks, much less is known for
interacting many-particle systems on such networks �23�. In
particular, the behavior of nonequilibrium systems possess-
ing an absorbing phase transition has not cleared up yet. The
aim of the present work is to investigate the contact process
on these networks. On the basis of the scaling of diameter
and mean-square displacement of random walks, we expect a
nonequilibrium system possessing an absorbing phase tran-
sition, such as the contact process, to be characterized by
altered critical exponents when defined on such networks
compared to the corresponding one-dimensional model. We
will demonstrate by Monte Carlo �MC� simulations that this
is indeed the case for a class of regular networks which,
concerning the diameter and random walks, are known to be
described by power laws, similar to s=2 random networks.
The advantage of studying regular networks is that, at least,
the diameter exponent and the random-walk dimension are
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exactly known here and unlike for random networks no dis-
order �sample� average is needed to carry out here.

The rest of the paper is organized as follows. The net-
works to be investigated are defined in Sec. II. The model
and the studied quantities are specified in Sec. III. Results of
numerical simulations are presented in Sec. IV and discussed
in Sec. V.

II. NETWORKS WITH LONG LINKS

A. Definition of networks

In this section, we specify the networks on which the
contact process is studied. First, a regular one-dimensional
lattice �periodic or open� with L sites is considered, where
the lattice sites are numbered consecutively from 1 to L. To
this lattice, where the degree of sites, i.e., the number of
edges emanating from a site, is 2, links are added one by one
until all sites become of degree 3. Sites of degree 2 will be
called in brief free sites and k will denote a fixed positive
integer. When constructing the networks, in general, pairs of
free sites that have k−1 free sites between them are con-
nected iteratively �24�. In the following, the steps of this
procedure will be described in detail.

All the networks that we study are defined by means of
aperiodic sequences; therefore, we start with a brief introduc-
tion of them. The aperiodic sequences that we need are gen-
erated by substitution rules on the letters of a finite alphabet
A= �a ,b ,c , . . .� that assigns a word �a finite string of letters�
w� to each letter ��A. An �finite� aperiodic sequence is
obtained by applying the inflation rule iteratively �finitely
many times� starting with a single letter �which is letter b by
convention�. We use the two-letter sequence defined by the
inflation rule

�n:	a → wa = aba�ba�n−1

b → wb = a�ba�n−1,

 �1�

where n is a positive integer and a three-letter sequence
called tripling sequence generated by

�t:�a → wa = aba

b → wb = cbc

c → wc = abc .
� �2�

The two-letter inflation rule with n=1 generates the
silver-mean sequence with the first few iterations
b ,a ,aba ,abaaaba ,abaaabaabaabaaaba, etc., whereas with

the choice n=2, the well-known Fibonacci sequence is gen-
erated.

Having defined the aperiodic sequences, we return to the
construction of networks. First, the class of networks is de-
fined, where k=1, which means neighboring free sites are
connected recursively. Here, a finite aperiodic sequence is
chosen and the edges of the �finite� initial one-dimensional
lattice are labeled consecutively by the letters of this se-
quence. Assume that all the edges, which are labeled by let-
ter ��A, have a common length denoted by l�. Further-
more, let the edge lengths l� be ordered for the case of two-
letter sequences as lb� la, while for the tripling sequence as
lb� lc� la. Now, let us find the closest pair of free sites �or,
to be precise, one of the pairs with the shortest spacing be-
tween them� and connect them with an additional edge. This
step is then iterated until all sites become of degree 3. It is
clear that initially there is a multitude of pairs, which are
separated by the shortest distance �lb� and, in the first few
steps, these pairs are connected subsequently. Obviously, as
the procedure goes on, the minimal spacing increases and
longer and longer edges will form.

We have studied the contact process on three different
networks with k=1: the silver-mean network, the Fibonacci
network, and the tripling network, which are constructed by
using the corresponding aperiodic sequence. The structure of
these networks is illustrated in Fig. 1.

In addition to this, we have considered networks with k
=2, as well. The k=2 tripling network and the k=2 silver-
mean network are constructed as follows �24�. First, the sites
of a one-dimensional lattice are labeled with the letters of the
corresponding sequence. The sites are grouped into blocks
corresponding to words w� in the inflation rule. Then, sites
belonging to one-letter blocks are renamed according to the
reversed inflation rule w�→�, where w� is the one-letter
word corresponding to the block. In blocks composed of
three sites, the two lateral sites are connected, and the middle
one is renamed again according to the reversed inflation rule
w�→�, where w� is the word corresponding to the block.
The above step is then iterated until only one free site �the
central one� is left.

The third network with k=2 that will be investigated is
the cubic Hanoi-tower network �23� that can be constructed
following the above procedure with the inflation rule:

�H:	a → wa = aba

b → wb = b .

 �3�

The three networks with k=2 are illustrated in Fig. 2.

a b a a a b a a b a a b a a a b a

a b a b a a b a a b a b a

a b a c b c a b a a b c c b c a b c a b a c b c a b a

FIG. 1. Finite silver-mean, Fibonacci, and tri-
pling networks �from top to bottom�.

RÓBERT JUHÁSZ AND GÉZA ÓDOR PHYSICAL REVIEW E 80, 041123 �2009�

041123-2



B. Diameter and random-walk dimension

In the rest of this section, we shall survey some intrinsic
properties of the above networks that are exactly known and
are relevant with respect to the off-critical dynamical behav-
ior of the contact process.

Beside the distance x measured on the underlying one-
dimensional lattice, another metric is the shortest-path length
� between two sites, which is the minimal number of links
that have to be traversed when going from one site to the
other one. The average length of the shortest path between
two sites separated by the distance x scales in these networks

as �̄�t��xdmin, where dmin is the shortest-path dimension of
the network. The diameter D�L� of a typical finite graph with
L sites, which is the largest shortest-path length between any
two sites grows also algebraically as D�L��Ldmin. The aver-
age number of sites V��� that can be reached in at most �

steps starting from a given site scales as V�����dg, where dg
is the graph dimension that is related to dmin as dg=1 /dmin.

The other property that we need is the random-walk di-
mension of the network. Let us consider a continuous time
random walk on �infinite� networks, where the walker can
jump with unit rate to any of the sites connected with the
site it resides. The random-walk dimension dw is defined
through the asymptotical relation �
x2�t���typ� t2/dw, where
x�t� denotes the displacement of the walker at time t and
�
x2�t���typ�exp ln
x2�t�� is the “typical value” of 
x2�t��.
Here, 
 · � denotes the average over different stochastic histo-
ries for a fixed starting position, while the overbar stands for
the average over starting positions. Note that the expected
value 
x2�t�� does not exist if t�0 since the expected value
of edge lengths is infinite �in infinite networks�. This ac-
counts for that the average of ln
x2�t�� is considered instead.
Notice that drw is a dynamical exponent that relates time and
length scale of random walks.

The dimensions dmin and drw of the networks defined in
the previous section have been exactly calculated �23,24�;
the corresponding numerical values are shown in Tables I
and II.

III. CONTACT PROCESS ON NETWORKS

A. Definition of the model

The contact process is one of the earliest and simplest
lattice models that belongs to the DP universality class. It is
a continuous time Markov process on a state space �0,1�S,
where S is a finite or countable graph, usually Zd. A site with
state 0�1� is called inactive�active� or, in the context of epi-
demics, healthy�infected�. The dynamics is defined by
nearest-neighbor transitions that occur independently with
given rates. In d dimension, an infected site can spontane-
ously become healthy �1→0� with rate 1 or can infect one of
its neighbors �0→1� with rate � / �2d� �see Fig. 3�. This pro-
cess is defined on the cubic networks under consideration in
the way that infected sites are healed with rate 1 as before,
whereas each nearest-neighbor site is infected with rate � /3,
such that �for a site of degree 3� the total infection rate is �.

In numerical simulations, this process is realized by ran-
dom sequential updates: a randomly chosen infected site ei-
ther becomes healthy with probability 1 / �1+�� or a neigh-
boring site is attempted to be infected with probability

TABLE I. Various properties and estimated critical exponents of
k=1 networks. The known 1D exponents are from Refs. �1,26�.

1D Silver-mean Fibonacci Tripling

dmin 1 0.7864… 0.7610… 0.6309…
drw 2 1.7864… 1.7610… 1.6309…
L 665858 1346270 1594324

ln�b� 1.7627… 1.4436… 1.0986…
ln��� 2.5�1� 2.0�1� 1.4�1�
ln���
ln�b� 1.4�1� 1.4�1� 1.3�1�
�c 3.29785 3.0831�4� 3.0146�2� 2.79926�5�
�0 0.31368 0.261�3� 0.253�1� 0.192�4�
�l 0.386�2� 0.385�2� 0.386�2�
�av 0.310�3� 0.307�3� 0.302�3�
�s 0.04998�2� −0.080�2� −0.067�3� −0.016�2�
	0 0.15947 0.249�3� 0.264�3� 0.367�5�
	l 0.124�2� 0.131�2� 0.172�2�
	av 0.201�3� 0.207�3� 0.253�3�
	s 0.42317�2� 0.590�2� 0.583�2� 0.570�2�
2 /z0 1.26523 1.424�4� 1.445�3� 1.618�6�
2 /zl 1.429�3� 1.453�3� 1.625�3�
2 /zs 1.26523 1.426�5� 1.451�5� 1.624�4�
� 0.15947 0.201�1� 0.205�1� 0.250�1�

a b a c b c a b c c b c a b c a b a c b c a b aa b a

a b a a a b a a b a a b a a a b a

a b a b a b a b a b a b a b a

FIG. 2. Finite k=2 tripling, silver-mean, and
Hanoi-tower networks �from top to bottom�.
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� / �3�1+���. For sites of degree 2 �the central site in k=2
networks and the surface sites in open k=2 networks� and for
sites of degree 1 �the surface sites in k=1 networks�, no
update is attempted with probability � / �3�1+��� and
2� / �3�1+���, respectively.

Throughout the paper, we measure the time in units of
MC steps that corresponds to N update attempts, where N is
the actual number of particles at the beginning of the MC
step.

B. Studied quantities

The quantities, the time dependence of which we have
measured at criticality, are the average number of active sites
N�t� and the survival probability P�t�, which is the probabil-
ity that there is at least one active site at time t. Furthermore,
in the case of seed simulations, when initially a single site
denoted by m is active and all other sites are inactive, we
have also measured the second moment of the distance of the
growing cluster with respect to the origin m, the so-called
spread Rm

2 �t�. To be precise, this quantity is defined as
Rm

2 �t�= 
�i=1
L ni�t�xi

2�t�� /N�t�, where xi is the distance between

site i and the origin m, whereas ni is a binary variable, which
is one�zero� for active�inactive� sites. In the case of a single
initial seed, the above quantities are expected to follow
power laws asymptotically:

Nm�t� � t�m, �4�

Pm�t� � t−	m, �5�

Rm
2 �t� � t2/zm. �6�

In an inhomogeneous system, the critical exponents �m, 	m,
and zm may be different for different initial active sites m. We
shall see that this is indeed the case, at least for the former
two exponents. We have probed three different positions for
the initial seed. First, it has been located at the central site�s�,
i.e., site �L+1� /2 for k=2 networks, where the number of
sites L is odd, and sites L /2 and L /2+1 for k=1, where L is
even. We shall refer to this arrangement of the initial seed by
the index “0.” Second, the initial seed has also been located
at the site from which the longest edge of the �finite� network
emanates. �Note that the edge connecting site 1 and site L in
Fig. 1 is not the longest one since they are neighbors on the
ring.� This initialization is indexed by “l.” Note that in this
case, as the process starts, the spread jumps immediately to
O�x2�, where x is the length of the longest edge. To ensure
the smooth increase in the spread, we have modified its defi-
nition so that xi is the minimum of the distances measured
from the two sites, which are connected by the longest edge.
Third, we have considered networks built on open one-
dimensional chains, where the end sites are of degree 1 for
k=1 and of degree 2 for k=2. In these networks, the initial
seed has been located at the surface, i.e., at site 1. The ex-
ponents corresponding to this arrangement are indexed by
“s.”

In addition to this, we have measured N�t� and P�t�, the
number of active sites and the survival probability, respec-
tively, that are averaged over seed simulations started from
all possible initial sites 1 ,2 , . . . ,L. The corresponding expo-
nents are denoted by �av and 	av. Note that the average of
R2�t� over all possible initial sites diverges in an infinite net-
work for any t�0 since the expected value of edge lengths is
infinite �24�. Nevertheless, the averaging would not provide
any new information anyway on the spread since, according
to the numerical results, the dynamical exponent zm�z is
independent of the location of the initial seed.

Another dynamical scaling exponent characterizes the
critical system that is started from a homogeneous fully oc-
cupied initial state. In this case, the density 
�t� of infected
sites decays asymptotically as


�t� � t−�. �7�

In case of models of the DP class defined on regular lattices,
�=	 holds due to the rapidity reversal symmetry �see �1��.
We shall, however, see that this equality does not hold in
general for the networks under study.

TABLE II. Various properties and estimated critical exponents
of k=2 networks.

k=2 tripling k=2 silver-mean Hanoi

dmin 0.6309… 0.6232… 0.5

drw 1.4650… 1.4575… 1.3057…
L 1594323 1607521 4194303

ln�b� 1.0986… 1.7627… 0.6931…
ln��� 1.4�1� 2.1�1�
ln���
ln�b� 1.3�1� 1.2�1�
�c 2.31269�3� 2.28979�3� 2.18432�4�
�0 0.117�2� 0.114�4� 0.12�1�
�l 0.303�5� 0.308�2� 0.33�1�
�av 0.296�1� 0.294�2� 0.28�1�
�s 0.119�2� 0.117�2� 0.07�3�
	0 0.448�4� 0.453�3� 0.49�1�
	l 0.261�2� 0.259�2� 0.28�1�
	av 0.268�2� 0.271�2� 0.33�1�
	s 0.446�2� 0.448�2� 0.54�1�
2 /z0 1.665�2� 1.673�2� 1.90�1�
2 /zl 1.665�2� 1.675�3� 1.90�1�
2 /zs 1.667�4� 1.674�2� 1.89�1�
� 0.269�1� 0.271�1� 0.33�1�

λ/2 λ/2 λ 1

t+dt

t

FIG. 3. Allowed transitions and the corresponding rates in the
one-dimensional contact process. Full �empty� circles symbolize ac-
tive�inactive� sites.
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IV. RESULTS

A. Off-critical behavior

According to our numerical results, below the critical
value of the activation rate �c, which is characteristic for the
underlying network, the system is in the inactive phase.
Here, the number of active sites is found to decrease expo-
nentially in time similar to regular lattices. The dynamics in
this phase can be essentially described by random walks of
the infection since active sites typically become rapidly in-
active after activating a neighboring site. Accordingly, the
spread is well approximated by the mean-square displace-
ment of random walks R2�t�� t2/drw, with the only difference
compared to regular lattices is that the dimension drw enter-
ing the above relation is the anomalous random-walk dimen-
sion of the underlying network.

In the active phase ���c, the inactivation processes are
irrelevant and the infection is spreading with a constant
speed across the network. Since in t time steps all sites
within the distance �� t are activated, the number of active
sites grows in time as N�t��V�t�� t1/dmin. As the growing
cluster of active sites is compact in this phase, the spread
increases in time as R2�t�� t2/dmin.

The above laws for R2�t� below and above the critical
point provide the bounds dmin�z�drw for the nontrivial
critical dynamical exponent z. Furthermore, the number of
active sites in surviving samples must not grow faster at
criticality than in the active phase, which yields the inequal-
ity �+	�1 /dmin. We shall see that the measured critical
exponents are compatible with these �rather weak� bounds.

B. Critical behavior

The numerical simulations have been performed in net-
works that are built on a finite periodic one-dimensional lat-
tice, except for seed simulations started from the surface site,
where networks built on open chains have been used.

The size �i.e., the number of sites� L of aperiodic net-
works is not arbitrary but it is given by the possible lengths
of finite strings of the corresponding aperiodic sequence
�24�. The system sizes that we have typically used in the
simulations are shown in Tables I and II. The simulation time
was typically 218–222 MC steps and the averaging has been
performed over 106 independent runs. In case of seed simu-
lations, the applied system sizes were large enough com-
pared to the size of growing clusters such that the system can
be regarded as infinite.

In order to estimate the critical infection rate �c and to
keep track corrections to scaling more clearly, we have moni-
tored the effective exponent �eff�t� defined by the local slope

�eff�t� = −
d ln�
�t��

d ln�t�
. �8�

This kind of analysis helped to estimate the other dynamical
exponents �	 ,� ,z�, as well. However, the presence of log-
periodic oscillations made the determination of the critical
point rather difficult since they distort the monotonicity of
the functions. Without these modulations, the effective expo-
nents show upward�downward� curvature above�below� the

transition point, respectively �see Fig. 4�. In what follows,
we shall illustrate the critical behavior of the model mainly
for the particular case of the k=1 Fibonacci network; the
behavior of the process on the other networks is qualitatively
similar and the corresponding quantitative data can be found
in Tables I and II.

First we located the critical point by measuring dynamical
quantities and calculating the effective exponents. In case of
the k=1 Fibonacci network, the average number of particles
originating from the central site increases algebraically, su-
perimposed with log-periodic oscillations as can be seen in
Fig. 4.

The critical point estimated by the local slopes is at �
=3.0146�2� with moderate corrections to scaling. The sur-
vival probability P�t� and the R2�t� also show these periodic
modulations with the same period ln �=2.0�1�. This is in
agreement with the expectations for critical systems with dis-
crete spatial scale invariance. Such systems remain self-
similar when lengths are rescaled by a given �nonarbitrary�
scale factor b that is characteristic for the system. The time-
dependent quantities in such models are expected to display
log-periodic oscillations with a temporal period ln � that is
related to the spatial scale factor through

ln � = z ln b , �9�

where z is the dynamical exponent of the model �27�. The
numerical values of the spatial scale factors b of the net-
works under study �23,24� and the estimated temporal peri-
ods are given in Tables I and II. The data are in satisfactory
agreement with Eq. �9�.

As aforementioned, we performed simulations with three
different positions of the initial active seed. According to the
numerical results �see Tables I and II�, in the three cases the
exponents �m and 	m are different, whereas zm and the sum
�m+	m are independent of the initial position m �35�. The
latter means that the growth rate of the number of active sites
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FIG. 4. �Color online� Time dependence of the particle number
N0�t� in the k=1 Fibonacci network for �=3.013,3.014,
3.0145,3.016 �from bottom to top�. Log-periodic modulations at
criticality with a period ln �=2.0�1� can be read off. The upper inset
shows the corresponding local slopes; the lower inset shows the
unscaled data.
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averaged in surviving samples, i.e., Nm�t� / Pm�t�, is not influ-
enced by the location m of the initial seed.

As opposed to this, the survival probability is sensitive to
this circumstance. We have found that 	0�	l, which is intu-
itively obvious and can be explained as follows. The survival
probability is greatly influenced by the relative position of
the growing cluster with respect to the long edges as the
active region reaches them. If the process starts from the
central site, the cluster grows typically symmetrically around
the central site. Since the longer edges are also located sym-
metrically around the central site, the growing cluster over-
laps with itself as in a finite system with periodic boundary
conditions. This, however, decreases the survival probability
because the rate of unsuccessful activation attempts is higher
in an overlapping front. Thus, in this case, the long edges of
the network are not utilized in a favorable way from the
point of view of the survival of the process. Apparently, for
initial sites, which have an environment identical to that of
the central one but only within a finite radius, the growth is
described by the same exponents until the cluster is within
this radius.

Contrary to this, when the process is started at a site with
a long edge, the infection is transferred immediately to a
far-away place and the two clusters spreading out from the
two sites connected by the long edge do not hinder each
other. Of course, in case of a long edge of length l, the two
advancing fronts meet after time t�O�lz� and the exponents
�l and 	l describe the spreading dynamics only below this
time scale. At this time scale, a crossover occurs to a region
with a faster decaying survival probability. In fact, for a typi-
cal initial seed location, the dynamical quantities suffer a
series of crossovers, depending on the relative position of the
initial site with respect to the longer and longer edges the
cluster hits.

On the grounds of the above argumentations, the most
favorable initial site for the cluster survival is the site at the
longest edge, while, disregarding the surface site, the most
unfavorable site is the central one. Therefore, the decay of
the average survival probability must be bounded by the sur-
viving probabilities in the above two extremal situations and
we expect 	0�	av�	l to hold. According to our numerical
results, these relations are valid indeed.

Starting from a fully occupied initial state, the decay of
the density at the critical point is characterized by the expo-
nent �, as shown in Fig. 5.

As can be seen from the estimated exponents given in the
tables, in general, 	m��, in contrast with the CP on regular
lattices, where 	=� holds. As a consequence, the hyperscal-
ing law of DP does not hold on the networks under study,
i.e., 2	m+�m�d /z with d=1. But the set of critical expo-
nents are compatible with the generalized hyperscaling law
�28�

	m + � + �m = d/z �10�

with d=1. We thus conclude that the rapidity reversal sym-
metry, which is necessary to the validity of the hyperscaling
law is broken. In other words, P�t� and 
�t� scale in a differ-
ent way, which is a consequence of the presence of long
edges that render the system inhomogeneous in space. The

inhomogeneity of the system is illustrated in Fig. 6, where
the local particle densities 
nl�t�� are plotted at different
times against the distance l measured from the center. As can
be seen, the regularly arranged long edges induce modula-
tions in the profiles. As the number of infected sites grows at
criticality, as given in Eq. �4�, and the active sites are con-
centrated in a region of size 
�t�� t1/z, we expect the density
profiles to have the following scaling form:
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FIG. 5. �Color online� Density decay in the k=1 Fibonacci net-
work for �=3.0145,3.016 �from bottom to top�. Log-periodic os-
cillations can be seen as for N0�t�. The inset shows the unscaled
data.
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FIG. 6. �Color online� Upper figure: average occupation num-
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tiples of the estimated temporal period ln �. The process was started
from the central sites of the k=1 tripling network and the averaging
has been performed over 107 runs. Lower figure: scaling plot with
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nl�t�� = t�m−1/z
̃�l/t1/z� . �11�

This has been plotted in Fig. 6. As can be seen, the number
of peaks in the profiles is increasing with t and, as a conse-
quence, the scaling function 
̃�x� is nonsmooth.

Nevertheless, the numerical results suggest that 	av=� is
valid within error margin; thus for the average cluster-
spreading exponents the hyperscaling of DP is fulfilled, i.e.,

2	av + �av = 1/z . �12�

This indicates that the breaking of rapidity reversal symme-
try is indeed related to the presence of the spatial inhomoge-
neities in the system. This is in agreement with field theory
of directed percolation with long-range spreading �29�,
where the rapidity reversal symmetry persists.

Similar to the k=1 Fibonacci network, we performed the
above analysis for the k=1,2 silver-mean and tripling net-
works and for the k=2 Hanoi-tower network �see Figs. 7–9�.

The contact process on these networks exhibits the same
qualitative features as on the k=1 Fibonacci network except
that, for the Hanoi-tower network, log-periodic oscillations
cannot be observed presumably owing to their small ampli-
tude. The estimates of critical exponents, which depend on
the underlying network, can be found in Tables I and II.

V. DISCUSSION

First, we give a brief summary of the results obtained so
far. In each network, a phase transition between active and
inactive phases can be identified at some finite value of the
control parameter by inspecting dynamical properties such as
the time dependence of the number of active sites, the sur-
vival probability, and the spread. At the absorbing phase
transition, conventional power-law dependence of the above
quantities can be observed apart from log-periodic oscilla-
tions that are related to the discrete scale invariance of the
underlying networks. In a given network, the critical expo-
nents �m and 	m depend on the location of the initial seed.
The cluster exponents satisfy the generalized hyperscaling
relation. However, in case of averaging over runs started at
different initial seed coordinates, the hyperscaling relation of
DP holds too. This means that the rapidity reversal symmetry
is broken as a consequence of the spatial inhomogeneity. The
dynamical critical exponents of the phase transition differ
from that of the one-dimensional DP universality class and
are found to be characteristic for the underlying network.

We close this work by discussing the relation between the
critical exponents of the CP and the shortest-path dimension
�or random-walk dimension� of the underlying network. The
measured critical exponents of the six network models are
plotted against the random-walk dimension of the corre-
sponding network in Fig. 10.

For decreasing drw, the critical exponents �av and 	av=�
move toward the mean-field values of DP ��MF=0, 	MF
=1� almost monotonically. These exponents lie in between
the corresponding values of the one-dimensional and the
two-dimensional DP universality classes. Contrary to this,
the dynamical exponent z does not move toward the mean-

0 1 2 3 4 5 6 7 8 9 10 11 12 13
ln(t)

1.2

1.4

1.6

1.8

2

2.2
N
0(
t)
/t0

.2
61

0 0.001 0.002 0.003 0.004
1/t

0.23

0.24

0.25

0.26

0.27

η 0,
ef

f

FIG. 7. �Color online� Time dependence of the particle number
N0�t� in the k=1 silver-mean network for �=3.081,3.082,3.083
�from bottom to top�. The period of oscillations is ln �=2.5�1�. The
inset shows the effective exponents.

2 3 4 5 6 7 8 9 10 11 12
ln(t)

1

1.1

1.2

P
0(

t)
t0.

45
3

0 0.1 0.2
t
−0.5

0.47

0.42

0.37

δ 0,
ef

f

FIG. 8. �Color online� Time dependence of the survival prob-
ability P0�t� in the k=2 silver-mean network for �
=2.2896,2.28979,2.29 �from bottom to top�. The period of oscilla-
tions is ln �=2.1�1�. The inset shows the effective exponents.

2 4 6 8 10 12
ln(t)

0.27

0.32

0.37

0.42

0.47

R
02 (t

)t
1.

67
3

10
0

10
1

10
2

10
3

10
4

10
5

t

10
−1

10
1

10
3

10
5

10
7

10
9

R
02 (t

)

FIG. 9. �Color online� Time dependence of the spread R0
2�t� in

the k=2 silver-mean network for �=2.2896,2.28979,2.29 �from
bottom to top�. The inset shows the unscaled data.

SCALING BEHAVIOR OF THE CONTACT PROCESS IN… PHYSICAL REVIEW E 80, 041123 �2009�

041123-7



field value zMF=2 but decreases with decreasing drw. Thus, it
moves parallel with the dynamical exponent of the random
walk.

We recall that the k=1 silver-mean and k=1 Fibonacci
networks are the first two members of a family of networks,
which are defined by the inflation rule in Eq. �1�, and which
are parametrized by an integer n. For these networks, it is
known that dmin→1 and drw→2 when n→�, i.e., in this
limit, the characteristics of the regular one-dimensional lat-
tice are recovered �24�. Therefore, we conjecture that the

critical exponents of CP defined on these networks approach
the one-dimensional DP values without limits as n→�. In
the opposite limit, i.e., when drw→1 �and dmin→0�, it is an
open question what are the limiting values of the critical
exponents of the CP.

Finally, we mention that the above observations open up
the possibility to design networks on which dynamical pro-
cesses evolve in a prescribed way. The optimization of
spreading or transport processes in networks is of great prac-
tical relevance �21,30,31�. Besides the tuning of degree dis-
tribution or the dependence of transition rates on the degrees
of sites in nonregular �such as scale-free� networks �32–34�,
the networks studied in this work offer an alternative way of
controlling critical dynamics by means of choosing appropri-
ate sets of long links and the findings obtained here may
provide ideas in optimization problems.
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